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ABSTRACT

Current multi-reference style transfer models for Text-to-
Speech (TTS) perform sub-optimally on disjoints datasets,
where one dataset contains only a single style class for one of
the style dimensions. These models generally fail to produce
style transfer for the dimension that is underrepresented in
the dataset. In this paper, we propose an adversarial cycle
consistency training scheme with paired and unpaired triplets
to ensure the use of information from all style dimensions.
During training, we incorporate unpaired triplets with ran-
domly selected reference audio samples and encourage the
synthesized speech to preserve the appropriate styles using
adversarial cycle consistency. We use this method to transfer
emotion from a dataset containing four emotions to a dataset
with only a single emotion. This results in a 78% improve-
ment in style transfer (based on emotion classification) with
minimal reduction in fidelity and naturalness. In subjective
evaluations our method was consistently rated as closer to the
reference style than the baseline. Synthesized speech sam-
ples are available at: https://sites.google.com/
view/adv-cycle—-consistent-tts

Index Terms— Text-to-Speech, Speech Synthesis, Style
Transfer, Cycle Consistency, Adversarial Learning

1. INTRODUCTION

The goal of Text-To-Speech (TTS) synthesis is to generate
human-like speech based on a text input. Recently, end-to-
end trainable neural networks have become increasingly pop-
ular for this task. For example, Tacotron [[1] and Tacotron-2
[2]] use an encoder-decoder architecture that is trained with
pairs of text and audio samples (%4, Tquq) and a learning
objective that the synthesized speech should faithfully recon-
struct z4,4. With the success of neural TTS systems, the cur-
rent focus has been on 7T stylization [3l], where the goal is to
control the style of speech during the synthesis process. The
stylization occurs when the system can generate speech for a
given text input in a style that is different from what exists in
the training data. An ability to control speech style is crucial
for developing natural, human-like TTS systems.

We use style dimension to refer to the category of the
given style, such as speaker identity, emotion, or accent, and
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Emotion

Speaker ID Neutral Sad Angry Happy

Speaker 1 v
Speaker 2 v v v v

Table 1. We use multiple reference audio clips to control dif-
ferent dimensions of speech style (e.g., speaker ID and emo-
tion). We focus on the scenario of disjoint datasets, e.g., only
one dataset (Speaker 2) contains samples of different emo-
tions.

style class to refer to a specific type such as speakerl, happy,
or Scottish. An audio sample z,,4 has style class labels for ei-
ther all the defined style dimensions, e.g., it is from speakerl
with happy emotion and a Scottish accent, or only for a sub-
set of the style dimensions, e.g., it is missing the emotion and
accent labels.

Multiple systems exist to model the style of speech [3} 4,
S|, where a reference audio sample with the desired style is
used as a conditioning variable during the TTS process. How-
ever, most existing approaches require a large number of text-
audio training samples of different style dimensions/classes.
They also often fail to generalize to new domains unseen
during training. For example, to create speech in different
speaker identities and emotion classes using a single model, a
dataset containing audio samples for each emotion class and
speaker identity is needed, and yet the model could still fail
to transfer the emotion style to an unseen speaker. Collec-
tion of such datasets is challenging and this limits a timely
deployment of large-scale TTS stylization systems.

In this paper, we focus on multi-reference neural TTS
stylization with disjoint datasets. Disjoint datasets occur
when one dataset contains samples of only a single style class
for one of the style dimensions. Table 1| shows a particular
scenario we consider in this paper: we use an internal dataset
of North American English with two speakers. The dataset
for Speaker 1 contains examples for only a single emotion
(Neutral) whereas the dataset for Speaker 2 contains exam-
ples of all four emotion classes (Neutral, Sad, Angry, Happy).
This represents a minimalistic scenario of the aforementioned
issue: a model must be able to learn disentangled represen-
tations of the two style dimensions, and properly transfer the
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knowledge about one dimension (emotion) across another di-
mension (speaker identity) where no variation of style classes
is available. This poses a significant challenge to TTS styliza-
tion similar to domain adaptation [6]], yet in a unique scenario
of style transfer in the speech signal processing domain.

Previous work on TTS stylization has primarily focused
on the transfer of a single style reference audio sample [3| 4}
S, [7]. Those methods are inadequate for disjoint datasets be-
cause of their lack of domain adaptation capability. In an ex-
treme case, those methods could, for example, learn to iden-
tify the emotion using features from the speaker identity di-
mension. They could also simply ignore the other style di-
mension (emotion) entirely and always map Speaker 1 sam-
ples to the only available style class (Neutral).

Recently, Bian et al. [8] tackled multi-reference TTS
stylization, based on GST-Tacotron [4] and an intercross
training scheme. They showed successful style transfer on
a speaker-prosody multi-reference scenario using a 30-hour
corpus with 27 speakers and 5 prosodies. However, their
intercross training scheme does not guarantee each combina-
tion of style classes is seen during training, causing a missed
opportunity to learn disentangled representations of styles
and sub-optimal results on disjoint datasets.

In this paper, we address the challenges of multi-reference
style transfer on disjoint datasets by using an adversarial cy-
cle consistency training scheme. Unlike intercross training,
our training scheme sweeps across all combinations of style
classes via paired and unpaired triplets. This provides disen-
tanglement of multiple style dimensions and classes, enabling
our model to transfer style in a more faithful manner than ex-
isting methods. Testing on our 40-hour disjoint dataset of 2
speakers and 4 emotions, we observe improved emotional ex-
pressiveness in synthesized speech, achieving 98.34% classi-
fication accuracy of emotion, a 78.48% improvement over the
baseline model.

2. OUR METHOD

Fig|l| shows a schematic diagram of our system. It consists
of a text encoder F},;, reference audio encoders F,, 41 and
Fg4uq2, and an audio decoder D, 4. Each audio encoder cap-
tures a different style dimension, e.g., ;41 captures speaker
identity and E,, 42 captures emotion.

At inference time, our model encodes a text string and two
reference audio inputs, and produces a spectrogram using the
audio decoder; this is converted to the wave file format using
the Griffin-Lim vocoder [9]. More specifically, our text en-
coder F;.; and audio decoder D, 4 follow the same encoder-
decoder architecture of Tacotron-2 [2]]. We augment this with
a reference encoder for each style dimension and concatenate
each output embedding e,.,41, €qaud2 to the text context vector
at each decoder step. The reference audio encoders follow the
same structure as the audio encoder in [10]].

During training, we attach style classifiers Cls(. .y with
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Fig. 1. Our adversarial cycle consistency training scheme for
unpaired samples in a two-reference model. Paired samples
are trained with the same scheme and same components, ex-
cept the synthesized samples €,,,4 are not re-encoded, i.e., the
orange dashed lines do not exist for paired samples.

gradient reversal layers GradRev and feed the generated
spectrograms back to the reference audio encoders. This
forms the adversarial cycle consistency objective [[L1]. Below
we provide details of our training method.

2.1. Model Training

Learning from disjoint datasets is difficult because we do not
have text-audio pairs for all possible combinations of style
classes across each style dimension. To encourage disentan-
gling of the style embeddings, we require the model to use
both style embeddings e4,,41 and €4, 42 during training, with
each capturing a different style dimension. Further, we care-
fully select reference audio samples to ensure each style and
speaker is seen during training, filling in the gaps in Table

We achieve this by synthesizing speech from both paired
and unpaired triplets. We use the convention xgygq,, , to rep-
resent reference audio samples, where n stands for the style
dimension and p stands for the pairing type. The pairing
type can take one of three values: 1) a paired audio sample
Taud, , With the same verbal content as the input text, 2) a
style-matched audio sample 4,4, . With the same style class
as the paired audio sample but with a different verbal content
than the input text, 3) a random audio sample %444, _ With a
random style class.

A paired triplet contains a text sample, a paired audio
sample, and a style-matched audio sample, and it can be ei-
ther (Z1t, Taud, ;> Tauds..) OF (Ttat, Taudy. . Tauds ) AN
unpaired triplet contains a text sample and two random audio
samples, (Tiut, Taud, _ > Tauds, ). Our style-matched sample
is similar to that in the intercross training scheme used by
Bian et al. [8], and our random sample is similar to the un-
paired training scheme used by Ma et al. [3]. In this work,



we combine those ideas to enable multi-reference TTS styl-
ization from disjoint datasets. Next, we discuss the loss func-
tions used for the paired and unpaired triplets.

Reconstruction loss. For the paired triplets only, we
force the synthesized spectrograms to reconstruct the paired
audio sample. We follow [} [3| 4] and define an £; recon-
struction loss between the input spectrogram x,,q and the
output spectrogram Z 4,4,

‘Crecon = ||xaud - t’iaud”l

Adversarial Cycle Consistency Loss. The reconstruc-
tion loss alone is insufficient to constrain our model. Inspired
by [[L1]], we introduce an adversarial cycle consistency loss to
further constrain it. Our main idea is that an embedding e,
from the real audio sample must capture the correct style in-
formation. Thus, when we synthesize audio from it and feed
the result back to the same audio encoder, the resulting em-
bedding €,,4 should contain the same style information as
equd; hence the cycle consistency. Furthermore, each of the
two audio embeddings eq,q(.) should only contain informa-
tion about the corresponding style dimension; in other words,
€qud1 should have no information about style dimension two,
and similarly e, 42 should not have information about style
dimension one; this can be enforced via adversarial learning.

We design our adversarial cycle consistency loss by com-
bining the two ideas above. To this end, we define style classi-
fiers Cls; ; where i refers to the style dimension of the input
embedding and j refers to the style dimension upon which
the classification occurs. The classifier is a two-layer MLP
with a softmax classifier and outputs equal to the number of
style classes for the j-th style dimension. We train it with a
cross-entropy loss:

‘Ccls = - Z Yi,j IOg(gi,j)
]

where y; ; is the ground-truth style class for the i-th embed-
ding in the j-th style dimension, and ¥; ; is the predicted style
class. For ¢ = j, the classifier encourages an embedding e,q,
to contain the correct information of the ¢-th style dimension.
For ¢ # j, the classifier discourages the use of information
about the other style dimension. We use the gradient reversal
layer [12] before the classifiers for i # j to enable adversarial
learning.

The adversarial cycle consistency loss is then a combi-
nation of classification losses for paired triplets, unpaired
triplets, and synthesized samples (with § = .01),

»Cadv.cycle = £cls,paired + Ecls,unpaired + 5£cls,synthesized

Orthogonality loss. Finally, we introduce an orthogo-
nality constraint to help the model learn disentangled style
representations, similar to [8]]. This is defined over the style
embeddings as

»Co'r‘tho = Z ||e;udi e‘lUdj ||F7
iyJ

where || - || is the Frobenius norm and eqyq, (and equd;)
refers to the style embedding from style dimension ¢ (and j).
Training details. The final form of our loss function is

L == aﬁrecon + ﬂﬁadv.cycle + "Y‘Cortho

where & = = 1.0 and v = 0.02 are weights for the differ-
ent loss terms. We found the optimal weights and that the re-
sults are insensitive to small changes to those values through
cross-validation. We train our model on a single machine with
four NVIDIA Tesla M40 GPUs for 40k epochs using a batch
size of 96 text/audio pairs, each with a paired and unpaired
triplet, for a total of 192 triplets. Note that L.,y is defined
over only the paired triplets while the other two loss terms
are defined over both paired and unpaired triplets. We use
teacher-forcing for the reconstruction loss throughout the en-
tire training procedure. At inference time, we use a window
constraint for the text context attention, enforcing the maxi-
mum attention weight to be within a window of seven frames
from the previous max. For the rest of the hyperparameters,
we follow the same setup as outlined in [2]]. After the 40k
epochs, we add the adversarial game loss presented in Ma et
al. [3] and train for an additional 1k epochs. Fine-tuning the
model with this loss increases the fidelity of the synthesized
unpaired samples.

3. EXPERIMENTS AND DISCUSSIONS

Our disjoint datasets are defined over two style dimensions,
speaker identity and emotion, as shown in Table [l The
datasets contain 15,226 samples (18.55 hours) and 22,325
samples (21.62 hours) for Speakers 1 and 2 respectively. To
the best of our knowledge, there exists only one published
method that tackles multi-reference TTS stylization: we com-
pare to Bian et al. [§] in our experiments.

Style Classification Accuracy. We train two speech style
classifiers (speaker identity and emotion) using the reference
audio samples from the TTS training data. The classifiers
have the same structure as the reference encoder and the style
classifier in our model. Their final validation accuracies are
99% and 95% respectively.

Next, we synthesize speech from each test text sample
four times, once in each emotion, and predict their style class
labels using the trained classifiers. For the emotion reference,
we use a random sample in the appropriate emotion from the
Speaker 2 test set. For the speaker identity reference, we use
the paired audio sample.

Table [2| shows the classification results and Figure
shows the confusion matrices. Both models achieve greater
than 96% accuracy on speaker identity, showing their ability
to retain speaker identity in synthesized samples. However,
the baseline model performs poorly on emotion classifica-
tion, achieving only a 55.1% classification accuracy. As can
be seen in the confusion matrix, many samples from the an-
gry, happy, and sad classes are grouped into the neutral class,



demonstrating a lack of style transfer. Our model achieves
98.3% classification accuracy, demonstrating a much higher
rate of emotion style transfer.

| Emt Acc (%) Spk Acc (%)
Bian et al. [8]] 55.1 97.1
Our Model 98.3 96.9

Table 2. Results of style classification for emotion (Emt) and
speaker identity (Spk). We use only Speaker 1 text samples
for the emotion classification.
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Fig. 2. Confusion matrix for emotion classification results of
Speaker 1 synthesized samples.

We also visualize 100 embeddings (25 from each emo-
tion) created by the emotion classifier’s reference encoder us-
ing t-SNE [13]] in Figure 3] Our model produces much closer
and more separable clusters due to the improved emotion style
transfer; the results suggest an improved disentanglement of
the two style dimensions using our model.
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Fig. 3. T-SNE plots for the emotion embeddings for our
model (b) compared to the baseline (a).

Human Subject Evaluation. We recruited eight human
subjects to qualitatively evaluate our adversarial cycle consis-
tency model. To test style transfer, we performed a side-by-
side comparison of 20 synthesized Speaker 1 samples (5 texts

in each of the 4 emotions). Subjects evaluated the samples on
a 7-point scale (-3 to 3) where -3 refers to “sample A is clos-
est to the reference emotion”. The results show our model was
consistently rated as closer to the reference (11 = 0.86), espe-
cially for the three unseen emotions in the Speaker 1 dataset
(sad: p = 2.03, angry: p = 0.98, happy: p = 0.63).

To test naturalness, we asked subjects to rate voice quality
on a 5-point scale. Our model achieved a 3.29 mean opin-
ion score (MOS) while the baseline reached a 3.43 MOS.
Our model’s reduction in perceived quality may result from
its more pronounced style transfer — on neutral samples, our
model (3.63 MOS) outperforms the baseline (3.40 MOS). Per-
haps the style transfer was too strong (almost exaggerated) for
the other three emotions, leading to a decrease in the natural-
ness score.

Speech Fidelity. Finally, we evaluated the fidelity of the
synthesized speech samples. We synthesized each Speaker
I test text sample in each of the four emotions, then use
the Microsoft Azure speech-to-text service to generate tran-
scripts. The baseline reaches 15.75% word error rate (WER)
while our model achieves 16.95%. Similar to naturalness,
our model’s improved emotional expressiveness may be the
cause of its lower performance since the emotion can serve to
confound the automatic speech recognition system. We also
believe that improved fidelity could be achieved with a more
powerful vocoder such as WaveNet [14].

Comparison with Bian et al. [8]. We believe the baseline
model’s sub-optimal performance stems from the limitations
of the intercross training procedure. Since the procedure only
presents combinations of style classes that exist in the dataset
(e.g. entries with a check-mark in Table [T), unrepresented
combinations (e.g. the gaps in Table [T)) do not impact the
model loss and, thus, are not accounted for during backprop-
agation. By training on unpaired triplets with random ref-
erences, our cycle consistency training scheme ensures each
combination of style class (e.g. each entry in Table[I) is seen
during training, forcing the model to learn to create speech
for every style combination.

4. CONCLUSION

We present an adversarial cycle-consistent training proce-
dure for multi-reference neural TTS stylization on disjoint
datasets. Because recording training samples for new style
classes is labor-intensive, transferring style from one dataset
to another (including disjoint datasets) is an appealing feature
for TTS systems. Using our adversarial cycle consistency
training scheme, we achieve a much higher rate of style trans-
fer for disjoint datasets than previous models. We show our
model provides a 78% improvement in style transfer (based
on emotion classification) over an existing method with min-
imal reduction in fidelity and naturalness.
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